Esfuerzo normal (tensión/compresión): Esfuerzo flector (tensión/compresión): Esfuerzo torsor máximo: Esfuerzo cortante transversal (eje neutro):


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Esfuerzo normal (tensión/compresión): Esfuerzo flector (tensión/compresión): Esfuerzo torsor máximo: Esfuerzo cortante transversal (eje neutro):"

Transcripción

1 Esfuerzo normal (tensión/compresión): Esfuerzo flector (tensión/compresión): Esfuerzo torsor máximo: Esfuerzo cortante transversal (eje neutro): 2do momento de área respecto al eje y: 2do momento de área respecto al eje z: Módulo de sección torsión máxima en b: Módulo de sección torsión máxima en h:

2 POSICIÓN 1: La biela presenta un concentrador de esfuerzo en P ( ). La experiencia indica que esta es la ubicación de la sección crítica. Se marcan cuatro (4) elementos de esfuerzos enumerados como se muestra en la siguiente figura: Por observación, en la posición 1 es donde se genera mayor daño a la pieza, a través del par torsor provocado por la fuerza y su combinación con el par flector o la fuerza cortante transversal. El par flector en P y el par torsor en el eje de la biela son:

3 Mientras el esfuerzo flector es proporcional a la distancia perpendicular al eje neutro, el esfuerzo cortante transversal es máximo sobre este. El esfuerzo torsor es máximo en la superficie (y en el caso de un rectángulo en el centro de la longitud mayor). Para la posición 1, a continuación se muestran los elementos del 1 al 4 con sus respectivos esfuerzos: La combinación de esfuerzos en los elementos 1 y 4 los hacen los objetivos a analizar. Para el elemento 1: Para el elemento 4:

4 La teoría de la energía de la distorsión de Von Mises para falla en materiales dúctiles, el esfuerzo combinado, incluyendo el efecto de los concentradores de esfuerzos, se resume a: Los concentradores de esfuerzo en fatiga, Kf y Kfs, se hallan en función de los concentradores de esfuerzo estáticos Kt y Kts y de la sensibilidad a la muesca q y qs: Los concentradores de esfuerzos están disponibles en los libros de Diseño Mecánico. Usaremos las tablas del libro de Diseño en Ingeniería Mecánica de Shigley; en flexión: Dado que la gráfica no muestra valores de r/d mayores a 0.30, se tomara un Kt(flexión) 1.35.

5 En el caso de torsión, el caso que más se ajusta a nuestra geometría es el siguiente: La sensibilidad de la muesca se obtiene de las siguientes gráficas:

6 También puede usarse la siguiente fórmula: Luego los concentradores de esfuerzo en fatiga Kf pueden escribirse como: El valor de a puede aproximarse a un polinomio de tercer orden (Sut en kpsi): Para torsión en aceros de baja aleación, se incrementa el valor de Sut en 20 kpsi para obtener el valor de a y utilizarlo para hallar Kfs. Para Sut = 92 kpsi, a = in. y atorsión = in. Reemplazando para hallar los concentradores de esfuerzo:

7 Para el elemento 1 en la posición 1, el esfuerzo máximo según la teoría de Von Mises es: Para el elemento 4 en la posición 1, el esfuerzo máximo según la teoría de Von Mises es: POSICIÓN 2: El par flector en P es:

8 Como se muestra en la figura, se ha decidido conservar la alineación de los ejes coordenados respecto a la geometría de la biela. Para la posición 1, los esfuerzos en los elementos del 1 al 4 son: El concentrador de esfuerzo normal se consigue de la gráfica siguiente:

9 El esfuerzo normal en tensión es constante en toda la sección: El esfuerzo flector actúa solo en los elementos 2 y 4. Para el elemento 4: Con a = in., el concentrador de esfuerzo en fatiga para tensión es: Para el elemento 1 en la posición 2, el esfuerzo máximo según la teoría de Von Mises es: Para el elemento 4 en la posición 2, el esfuerzo máximo según la teoría de Von Mises es: POSICIÓN 3: La carga en la posición 3 es el 20% de la carga en la posición 1; igualmente se comportan los esfuerzos en los elementos 1 y 4, sin olvidar que estos cambian de dirección, para lo cual se incluirá el signo menos ( ). Para el elemento 1 en la posición 3, el esfuerzo máximo es:

10 Para el elemento 4 en la posición 3, el esfuerzo máximo es:

11 POSICIÓN 4: El efecto de la carga en la posición 4 es inverso a aquel en la posición 2; entonces:

12 DETERMINACIÓN DE ELEMENTO CRÍTICO Y ESFUERZOS MEDIO Y ALTERNOS: Los dos principales valores a tener en cuenta en la caracterización de los esfuerzos variables son el esfuerzo medio y el esfuerzo alterno: El elemento crítico en fatiga es aquel que está sometido a mayor variación del esfuerzo esto es, mayor esfuerzo alterno σa. La siguiente gráfica muestra la distribución del esfuerzo máximo en los elementos 1 y 4: Para el elemento 1, los esfuerzos medio y alterno son:

13 Para el elemento 4, los esfuerzos medio y alterno son: Siendo cercanos los valores de esfuerzo alterno en los elementos 1 y 4, el elemento 1 presenta mayor esfuerzo medio el cual está asociado a la falla por fluencia. Se continuará el análisis por fatiga de la biela a partir de este elemento. DETERMINACION DEL LÍMITE DE RESISTENCIA A LA FATIGA: Ya teniendo los valores de esfuerzos alterno y medio identificados, se procede a determinar el valor del límite de resistencia a la fatiga Se; este viene dado por: Donde Se es el límite a la fatiga obtenido a partir del ensayo de viga rotativa, 40 kpsi para el acero utilizado, 1040 enfriado al aire, y una vida de ciclos. Factor de superficie ka. Se determina a partir de la siguiente formula: Los valores para a y b pueden obtenerse en cualquier libro de Diseño Mecánico. Con Sut en kpsi, para superficie forjada a = 39.9 y b = El factor de superficie es: Factor de tamaño kb. La bibliografía disponible describe el uso de este factor para barras cilíndricas sometidas a flexión y torsión. En el caso de tener una geometría diferente,

14 primero debe hallarse un diámetro equivalente obtenido a partir del área sometida a esfuerzos iguales y mayores al 95% del valor máximo. Para barras rectangulares: Para 0.11 in < de < 2 in: Factor de carga kc. Para combinación de torsión y flexión kc = 1. Factor de temperatura kd. Para temperatura ambiente (evaluando Se en las mismas condiciones) kd = 1. Factor de confiabilidad ke. Para una confiabilidad del 99% ke = Factor de efectos varios kf. No se reportan efectos varios, kf = 1. Determinados los factores modificadores del límite de resistencia a la fatiga, tenemos que: DETERMINACIÓN DE LA CARGA ADMISIBLE SEGÚN CRITERIOS DE FALLA POR FATIGA: Para un factor de seguridad por fatiga de 2, el valor de F para cada uno de los criterios de falla es el siguiente:

15 Criterio de Soderberg. Es el criterio más conservador, asegura ante la fluencia del material por lo que se espera no existan deformaciones ni esfuerzos residuales: Criterio de Goodman modificado. Es el criterio más popular, aunque no protege ante deformación plástica, por lo que debe evaluarse la falla por fluencia ante carga estática en caso de presentarse cargas excesivas:

16 Criterio de Gerber. Proviene de ajustar los valores promedios de fallas por fatiga a un perfil parabólico, de modo que se pueda sacar mayor provecho de la pieza y el material: Criterio ASME-Elíptico. Este criterio, aunque no protege ante deformación plástica, es el más popular por su fácil algebra y su utilidad en el estudio de la fractura por fatiga. Se recomienda evaluar la falla por fluencia ante carga estática ante cargas excesivas:

17

Fatiga. Definición TEMA 5. 5 Fatiga estructural

Fatiga. Definición TEMA 5. 5 Fatiga estructural TEMA Definición Definición de FATIGA : La fatiga es el proceso de cambio permanente, progresivo y localizado que ocurre en un material sujeto a tensiones y deformaciones VARIABLES en algún punto o puntos

Más detalles

3. Cargas Estáticas 3.1. INTRODUCCIÓN. Una pieza de una máquina pude fallar por diferentes causas: Excesiva deformación plástica

3. Cargas Estáticas 3.1. INTRODUCCIÓN. Una pieza de una máquina pude fallar por diferentes causas: Excesiva deformación plástica DPTO. INGENIERÍA MECÁNICA, ENERGÉTICA Y DE MATERIALE 004 V. BADIOLA. Cargas Estáticas.. INTRODUCCIÓN Una pieza de una máquina pude fallar por diferentes causas: Excesiva deformación elástica Excesiva deformación

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

CÁLCULOS RELATIVOS A LOS ESTADOS LÍMITE DE SERVICIO

CÁLCULOS RELATIVOS A LOS ESTADOS LÍMITE DE SERVICIO CAPÍTULO XI CÁLCULOS RELATIVOS A LOS ESTADOS LÍMITE DE SERVICIO Artículo 49º Estado Límite de Fisuración 49.1 Consideraciones generales Para las comprobaciones relativas al Estado Límite de Fisuración,

Más detalles

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 112 111 CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 8.1 ANALISIS 8.1.1 CRITERIOS Las placas son los elementos que gobiernan el comportamiento sísmico de la edificación. Como lo hemos mencionado anteriormente,

Más detalles

ME-5600. Capítulo 5. Alejandro Ortiz Bernardin. www.cec.uchile.cl/~aortizb. Universidad de Chile

ME-5600. Capítulo 5. Alejandro Ortiz Bernardin. www.cec.uchile.cl/~aortizb. Universidad de Chile Diseño de Elementos Mecánicos ME-5600 Capítulo 5 Alejandro Ortiz Bernardin www.cec.uchile.cl/~aortizb Departamento de Ingeniería Mecánica Universidad de Chile Contenidos del Capítulo Resistencia Estática

Más detalles

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE - QUITO FACULTAD DE INGENIERÍAS CARRERA DE INGENIERÍA MECÁNICA

UNIVERSIDAD POLITÉCNICA SALESIANA SEDE - QUITO FACULTAD DE INGENIERÍAS CARRERA DE INGENIERÍA MECÁNICA UNIVERSIDAD POLITÉCNICA SALESIANA SEDE - QUITO FACULTAD DE INGENIERÍAS CARRERA DE INGENIERÍA MECÁNICA Tesis previa a la obtención del Título de Ingeniero Mecánico DISEÑO Y CONSTRUCCIÓN DE UNA MÁQUINA DE

Más detalles

ESCUELA INDUSTRIAL SUPERIOR. IRAM IAS U500-102 Productos de acero. Método de ensayo de tracción. Condiciones generales.

ESCUELA INDUSTRIAL SUPERIOR. IRAM IAS U500-102 Productos de acero. Método de ensayo de tracción. Condiciones generales. ESCUELA INDUSTRIAL SUPERIOR Anexa a la Facultad de Ingeniería Química UNIVERSIDAD NACIONAL DEL LITORAL Tema: RESISTENCIA DE MATERIALES Ensayo: Tracción estática de metales Normas consultadas: IRAM IAS

Más detalles

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas 1 Conceptos básicos El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas Índice La mecánica de sólidos y sus componentes La resistencia de materiales El ensayo

Más detalles

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia.

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia. T R A C C I Ó N Un cuerpo se encuentra sometido a tracción simple cuando sobre sus secciones transversales se le aplican cargas normales uniformemente repartidas y de modo de tender a producir su alargamiento.

Más detalles

Anejo: UNIONES POR TORNILLOS

Anejo: UNIONES POR TORNILLOS Anejo: UNIONES POR TORNILLOS UNIONES POR TORNILLOS 1. DEFINICIÓN Y CLASIFICACIÓN Los tornillos son piezas metálicas compuestas de una cabeza de forma exagonal, un vástago liso y una parte roscada que permite

Más detalles

DISEÑO MECÁNICO INGENIERÍA EJECUCIÓN MECÁNICA TEORÍAS DE FALLA POR FATIGA

DISEÑO MECÁNICO INGENIERÍA EJECUCIÓN MECÁNICA TEORÍAS DE FALLA POR FATIGA DISEÑO MECÁNICO INGENIERÍA EJECUCIÓN MECÁNICA TEORÍAS DE FALLA POR FATIGA INTRODUCCIÓN La mayoría de las fallas en las máquinas son consecuencia de cargas que varían con el tiempo en lugar de cargas estáticas.

Más detalles

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA Fernando MUZÁS LABAD, Doctor Ingeniero de Caminos Canales y Puertos Profesor Titular de Mecánica del Suelo ETSAM RESUMEN En el presente artículo

Más detalles

MODULO VII. FACTORES QUE INFLUYEN EN LOS ESFUERZOS DE MATERIALES

MODULO VII. FACTORES QUE INFLUYEN EN LOS ESFUERZOS DE MATERIALES 1 MODULO VII. FACTORES QUE INFLUYEN EN LOS ESFUERZOS DE MATERIALES 7.1. CONCENTRADORES DE ESFUERZO. Debido a que los elementos mecánicos tienen diferentes formas, acabados, imperfecciones y discontinuidades,

Más detalles

σ max = S y σ máx << S y TIPOS DE ESTUDIOS Módulo Dirección Sentido Punto de aplicación Constantes en el tiempo

σ max = S y σ máx << S y TIPOS DE ESTUDIOS Módulo Dirección Sentido Punto de aplicación Constantes en el tiempo Fenóeno de Fatiga 1 TIPO DE ETUDIO Módulo Dirección entido Punto de aplicación Constantes en el tiepo Análisis estático / Resistencia de ateriales Módulo Dirección entido Punto de aplicación Variables

Más detalles

Leyes de esfuerzos y funciones de desplazamiento a lo largo de una barra

Leyes de esfuerzos y funciones de desplazamiento a lo largo de una barra Lees de esfuerzos funciones de desplazamiento a lo largo de una barra Apellidos, nombre Basset Salom, Luisa ([email protected]) Departamento Centro Mecánica de Medios Continuos Teoría de Estructuras Escuela

Más detalles

ESFUERZO Y DEFORMACION

ESFUERZO Y DEFORMACION Introducción ESFUERZO Y DEFORMACION El diseño de cualquier elemento o de un sistema estructural implica responder dos preguntas: El elemento es resistente a las cargas aplicadas? y Tendrá la suficiente

Más detalles

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional Curso: Eurocódigo 3 Módulo 4 : Eurocódigo para Estructuras de cero Desarrollo de Una Propuesta Transnacional Lección 10: Resumen: La resistencia de una pieza a tracción se obtiene suponiendo que la sección

Más detalles

1.- Resistencia de Materiales

1.- Resistencia de Materiales XI 1 MECÁNICA TÉCNICA TEMA XI 1.- Resistencia de Materiales La asignatura Mecánica Técnica la podemos dividir en dos partes. La primera, desde el tema I al tema X del programa, forma parte de lo que tradicionalmente

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

Predimensionado de vigas. Prof. Argimiro Castillo Gandica

Predimensionado de vigas. Prof. Argimiro Castillo Gandica Predimensionado de vigas Prof. Argimiro Castillo Gandica Teoría Fundamental Los principios fundamentales del predimensionado de vigas lo comprende: Teoría de la flexión: explica las relaciones entre las

Más detalles

Resistencia de Materiales

Resistencia de Materiales Tema 5 - Deflexión en Vigas Resistencia de Materiales Tema 5 Deflexión en vigas Sección 1 - Ecuación diferencial de la elástica Ecuación diferencial de la elástica Para comenzar este tema se debe recordar

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 2.- RESISTENCIA DE MATERIALES. TRACCION. 1.1.- Resistencia de materiales. Objeto. La mecánica desde el punto de vista Físico

Más detalles

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria.

Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Tema 8 Propiedades Mecánicas: curva Esfuerzo Deformación Unitaria. Las propiedades mecánicas describen como se comporta un material cuando se le aplican fuerzas externas. Para propósitos de análisis, las

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

ENSAYO DE FLEXION OBJETIVOS

ENSAYO DE FLEXION OBJETIVOS ENSAYO DE OBJETIVOS Analizar el comportamiento de los materiales metálicos al ser sometidos a un esfuerzo de flexión pura. Reconocer y determinar de manera práctica las distintas propiedades mecánicas

Más detalles

Refuerzo longitudinal. Refuerzo transversal. Lateral

Refuerzo longitudinal. Refuerzo transversal. Lateral Sección Refuerzo longitudinal Refuerzo transversal Lateral Refuerzo transversal Refuerzo longitudinal Lateral Suple Refuerzo longitudinal Recubrimientos ACI 318 08 7.7.1 Protección por grados de exposición

Más detalles

Diseño de Estructuras de Acero

Diseño de Estructuras de Acero I.- Conceptos Generales de Diseño Diseño de Estructuras de Acero Las propiedades de los materiales estructurales tienen una influencia esencial en el comportamiento de la estructura que forman. Se pueden

Más detalles

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción

POLIGONO FUNICULAR. Figura 1 - Cable - Estructura trabajando a tracción TIDE - ESTRUCTURAS IV 1 POLIGONO FUNICULAR Consideramos en primer término un cable estirado entre dos puntos fijos, con una sola carga aplicada en su punto medio. Bajo la acción de la carga, el cable adopta

Más detalles

ALCANCE DIGITAL Nº 94 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS) TOMO VIII

ALCANCE DIGITAL Nº 94 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS) TOMO VIII ALCANCE DIGITAL Nº 94 Año CXXXIV San José, Costa Rica, viernes 13 de julio del 2012 Nº 136 PODER EJECUTIVO DECRETOS Nº 37070-MIVAH-MICIT-MOPT CÓDIGO SÍSMICO DE COSTA RICA 2010 (CONSTA DE VEINTE TOMOS)

Más detalles

ELASTICIDAD. Determinar experimentalmente el módulo de elasticidad de un material usando una viga.

ELASTICIDAD. Determinar experimentalmente el módulo de elasticidad de un material usando una viga. ELASTICIDAD OBJETIVOS Observar el fenómeno de deformación de una viga provocado al actuar sobre ella un esfuerzo normal y un momento flector Relacionar los criterios básicos para determinar el material,

Más detalles

Base Teórica del Ensayo de Tracción

Base Teórica del Ensayo de Tracción Base Teórica del Ensayo de Tracción El ensayo de tracción es un ensayo destructivo donde una probeta, normalizada o de elemento estructural de dimensiones y formas comerciales, es sometida a la acción

Más detalles

Carrera: EMM - 0526. Participantes. Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM - 0526. Participantes. Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre la asignatura: Carrera: Clave la asignatura: Horas teoría-horas práctica-créditos Mecánica Materiales Ingeniería Electromecánica EMM - 0526 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Fuerza Cortante y Momento Flector

Fuerza Cortante y Momento Flector TEMA VI Fuerza Cortante y Momento Flector Mecánica Racional 10 Profesora: Nayive Jaramillo S. Contenido Vigas. Pórticos. Fuerza Cortante (V). Momento Flector (M). Convenio de signos. Diagramas de fuerza

Más detalles

diseño al último esfuerzo, ambiguedad o economía?

diseño al último esfuerzo, ambiguedad o economía? T E C N O L O G Í A diseño al último esfuerzo, ambiguedad o economía? : alejandro graff Una vez sobrepasado este valor, las vigas de concreto seguían soportando cargas aunque su deformación fuera mayor.

Más detalles

TEORÍA DEL ESFUERZO CORTANTE MÁXIMO CONDICIÓN DE FLUENCIA DE TRESCA

TEORÍA DEL ESFUERZO CORTANTE MÁXIMO CONDICIÓN DE FLUENCIA DE TRESCA TEORÍAS DE FALLA TEORÍA DEL ESFUERZO CORTANTE MÁXIMO CONDICIÓN DE FLUENCIA DE TRESCA La teoría resulta de la observación de que en un material dúctil aparecen deslizamientos durante la fluencia, a lo largo

Más detalles

28 Evaluación de la resistencia de estructuras existentes

28 Evaluación de la resistencia de estructuras existentes 28 Evaluación de la resistencia de estructuras existentes ACTUALIZACIÓN PARA EL CÓDIGO 2002 Se revisaron los factores de reducción de la resistencia a utilizar para la evaluación analítica de la resistencia

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS Laboratorio Virtual de niciación al Estudio de la Electrocinética y Circuitos de Corriente EJECCOS ESUELTOS EJECCO La cantidad de carga q (en C) que pasa a través de una superficie de área cm varía con

Más detalles

TECHTALK. Este boletín aborda los conocimientos con que

TECHTALK. Este boletín aborda los conocimientos con que Idoneidad de los productos de Flexpipe Systems para su uso en aplicaciones con ciclos de presión y pulsaciones Este boletín aborda los conocimientos con que cuenta Flexpipe Systems sobre las aplicaciones

Más detalles

Materiales y sus Propiedades Docente:

Materiales y sus Propiedades Docente: UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS TÉCNICO EN INGENIERÍA MECÁNICA CICLO - AÑO II 2015 Guía de Laboratorio N 5 Nombre de la Práctica: Ensayo Estático y Dinámico de los Materiales Lugar

Más detalles

DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN

DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN Ing. Marcelo Romo Proaño, M.Sc. Centro de Investigaciones Científicas Escuela Politécnica del Ejército [email protected] RESUMEN Se presentan curvas

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Medición de la fuerza

Medición de la fuerza Medición de la fuerza LAS FUERZAS PROBLEMÁTICA VECTORIAL En la mecánica clásica, una fuerza se define como una acción susceptible de modificar la cantidad de movimiento de un punto material. De ello resulta

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=fs= obprbiqlp=`lk=bi=`qb= = `ìêëçë=ommtlmu=ó=ommulmv= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw=

Más detalles

Trabajar los esfuerzos a los que se ve sometida una viga con la ayuda de la calculadora gráfica

Trabajar los esfuerzos a los que se ve sometida una viga con la ayuda de la calculadora gráfica DP. - S - 5119-2007 UL MTEMÁTIC DIGITL Trabajar los esfuerzos a los que se ve sometida una viga con la ayuda de la calculadora gráfica Rosana Álvarez García Profesora de Tecnología del I.E.S. lfonso II"

Más detalles

VIDRIO TEMPLADO. Suministro de vidrio templado

VIDRIO TEMPLADO. Suministro de vidrio templado VIDRIO TEMPLADO. Suministro de vidrio templado VIDRIO TEMPLADO. Definición. El proceso de templado se consigue calentando el vidrio en hornos hasta una temperatura de 706º C, que hace desaparecer las tensiones

Más detalles

Curso Diseño en Hormigón Armado según ACI 318-14

Curso Diseño en Hormigón Armado según ACI 318-14 SANTIAGO 27 y 29 Octubre 2015 Curso Diseño en Hormigón Armado según ACI 318-14 Clase: Diseño de Diafragmas y Losas Relator: Matías Hube G. Diseño de Diafragmas y Losas Losas en una dirección (Cáp. 7) Losas

Más detalles

ESTUDIO Y CARACTERIZACIÓN DE LAS FALLAS MECÁNICAS EN LOS RODILLOS DE PRENSADO USADOS EN LA FABRICACIÓN DE CARTÓN DE LA EMPRESA SONOCO LTDA.

ESTUDIO Y CARACTERIZACIÓN DE LAS FALLAS MECÁNICAS EN LOS RODILLOS DE PRENSADO USADOS EN LA FABRICACIÓN DE CARTÓN DE LA EMPRESA SONOCO LTDA. ESTUDIO Y CARACTERIZACIÓN DE LAS FALLAS MECÁNICAS EN LOS RODILLOS DE PRENSADO USADOS EN LA FABRICACIÓN DE CARTÓN DE LA EMPRESA SONOCO LTDA. RAÚL ALFONSO SUAN ROMERO JOHN GERSON MORENO ALCALÁ UNIVERSIDAD

Más detalles

Universidad Carlos III de Madrid DEPARTAMENTO DE INGENIERÍA MECÁNICA

Universidad Carlos III de Madrid DEPARTAMENTO DE INGENIERÍA MECÁNICA Universidad Carlos III de Madrid DEPARTAMENTO DE INGENIERÍA MECÁNICA Ingeniería Industrial: Especialidad Máquinas y Estructuras Proyecto Fin de Carrera METODOLOGÍA PARA EL ANÁLISIS A FATIGA MEDIANTE EL

Más detalles

CARTA DESCRIPTIVA. Antecedente(s): Materias del tercer semestre

CARTA DESCRIPTIVA. Antecedente(s): Materias del tercer semestre CARTA DESCRIPTIVA I. Identificadores de la asignatura Clave: Créditos: 6 Materia: Diseño de Estructuras de Concreto Reforzado Departamento: Ingeniería Civil y Ambiental Instituto: Ingeniería y Tecnología

Más detalles

OBJETIVO DEL DISEÑO DE MÁQUINAS

OBJETIVO DEL DISEÑO DE MÁQUINAS OBJETIVO DEL DISEÑO DE MÁQUINAS. Tipo de material. Forma. Dimensiones óptimas No falle al estar en servicio durante un tiempo determinado soportando unas cargas determinadas METODOLOGÍA Esfuerzos Dimensiones

Más detalles

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano.

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano. Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano. El endurecimiento por deformación plástica en frío es el fenómeno por medio del cual un

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO 7.1 Descripción En este capítulo se evaluarán las características de los elementos estructurales que componen al edificio y se diseñarán

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

ENSAYO DE TRACCIÓN UNIVERSAL

ENSAYO DE TRACCIÓN UNIVERSAL BLOQUE II.- Práctica II.-Ensayo de Tracción, pag 1 PRACTICA II: ENSAYO DE TRACCIÓN UNIVERSAL OBJETIVOS: El objetivo del ensayo de tracción es determinar aspectos importantes de la resistencia y alargamiento

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado.

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3.1. Generalidades Las zapatas son miembros estructurales que se encargan de transmitir la carga total de columnas, pilares o

Más detalles

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES CAPÍULO 2 CO CEPO DE REIE CIA DE MAERIALE 2.1 I RODUCCIÓ En este capítulo se presenta una revisión de los aspectos más pertinentes para el curso de Diseño I de la teoría de resistencia de materiales. e

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

D1 Diseño utilizando elementos finitos. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales

D1 Diseño utilizando elementos finitos. Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales D1 Diseño utilizando elementos finitos Diego Andrés Alvarez Marín Profesor Asistente Universidad Nacional de Colombia Sede Manizales 1 Tabla de contenido Observaciones generales Interpretación de gráficos

Más detalles

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS SISTEMA TERRENAL Normas generales Las antenas para la captación de las señales terrenales se montarán sobre mástil o torreta, bien arriostradas

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

11 knúmero de publicación: 2 141 353. 51 kint. Cl. 6 : F16H 37/04. Número de solicitud europea: 95919718.7 86 kfecha de presentación : 12.05.

11 knúmero de publicación: 2 141 353. 51 kint. Cl. 6 : F16H 37/04. Número de solicitud europea: 95919718.7 86 kfecha de presentación : 12.05. k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 knúmero de publicación: 2 141 33 1 kint. Cl. 6 : F16H 37/04 F16H 7/02 B2J 18/00 B2J 9/ H02K 7/116 12 k TRADUCCION DE PATENTE EUROPEA T3 86 k Número

Más detalles

ANCLAJES Y EMPALMES POR ADHERENCIA

ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.- ANCLAJES ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.1.- Anclaje de barras y alambres rectos traccionados 9.A.1.1.- Expresión general El CIRSOC 201-2005, artículo 12.2.3, indica la siguiente expresión

Más detalles

EJERCICIOS RESORTES DE COMPRESION

EJERCICIOS RESORTES DE COMPRESION ENUNCIADO EJERCICIOS RESORTES DE COMPRESION En una empresa XXX, se cuenta con camionetas de capacidad de carga de 750, por motivos de logistica se requiere que estas puedan cargar 1000. El terreno por

Más detalles

Contenido. Diseño de Estructuras de Acero McCormac /Csernak

Contenido. Diseño de Estructuras de Acero McCormac /Csernak Contenido Prefacio iii CAPÍTULO 1 Introducción al diseño estructural en acero 1 1.1 Ventajas del acero como material estructural 1 1.2 Desventajas del acero como material estructural 3 1.3 Primeros usos

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

0801-1989-13416 Victoria Lizzeth Casco 1010-1988-00154 José Clemente Zelaya Villanueva 0880-2005-00004 Miguel Tortosa Civera

0801-1989-13416 Victoria Lizzeth Casco 1010-1988-00154 José Clemente Zelaya Villanueva 0880-2005-00004 Miguel Tortosa Civera UNIVERSIDAD PEDAGÓGICA NACIONAL FRANCISCO MORAZÁN FACULTAD DE CIENCIA Y TECNOLOGÍA CARRERA DE MATEMÁTICAS Estudio de las graficas de las funciones polinomicas a traves de la variacion de sus coeficientes

Más detalles

CONCLUSIONES CONCLUSIONES

CONCLUSIONES CONCLUSIONES CONCLUSIONES Las conclusiones que se pueden sacar de los resultados obtenidos en los trabajos experimentales realizados y de los modelos teóricos elaborados para explicarlos y generalizarlos, se pueden

Más detalles

INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTES DENTALES ENDOÓSEOS TIPO SURGIMPLANT CE gr IV DE LA EMPRESA GALIMPLANT S.L.

INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTES DENTALES ENDOÓSEOS TIPO SURGIMPLANT CE gr IV DE LA EMPRESA GALIMPLANT S.L. LABORATORIO DE INGENIERÍA MECÁNICA ESCUELA SUPERIOR DE INGENIEROS. Cº de los Descubrimientos, s/n 41092 SEVILLA Tlf: 954 48 73 11/12, 954 48 73 88 Fax: 954 46 04 75 INFORME SOBRE ENSAYOS DE FATIGA DE IMPLANTES

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

www.fundibeq.org Es de aplicación a aquellos estudios o situaciones en que es necesario priorizar entre un conjunto de elementos.

www.fundibeq.org Es de aplicación a aquellos estudios o situaciones en que es necesario priorizar entre un conjunto de elementos. GRAÁFICOS DE GESTIÓON (LINEALES, BARRAS Y TARTAS) 1.- INTRODUCCIÓN Este documento introduce los Gráficos de Gestión de uso más común y de mayor utilidad: Gráficos Lineales, Gráficos de Barras y Gráficos

Más detalles

EQUIPO EPSUJATEAM PROYECTO DE DISEÑO

EQUIPO EPSUJATEAM PROYECTO DE DISEÑO EQUIPO EPSUJATEAM PROYECTO DE DISEÑO ÍNDICE 1. GEOMETRÍA GENERAL 2. SUSPENSIÓN DELANTERA 3. BASTIDOR 3.1. CHASIS 3.2. BASCULANTE 4. SUSPENSIÓN TRASERA 2 GEOMETRÍA GENERAL Lanzamiento de la horquilla:26º-28º

Más detalles

Lección 2. Puntos, vectores y variedades lineales.

Lección 2. Puntos, vectores y variedades lineales. Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de

Más detalles

Tolerancias dimensionales. Especificaciones dimensionales y tolerancias

Tolerancias dimensionales. Especificaciones dimensionales y tolerancias Tolerancias dimensionales Especificaciones dimensionales y tolerancias Eje y agujero Pareja de elementos, uno macho y otro hembra, que encajan entre sí, independientemente de la forma de la sección que

Más detalles

MEMORIA DE CALCULO ESTRUCTURA DE SOPORTACION DE HARNERO VIBRATORIO LUDOWICI MPE 8 X20 MEDIANTE EL METODO DE LOS ELEMENTOS FINITOS

MEMORIA DE CALCULO ESTRUCTURA DE SOPORTACION DE HARNERO VIBRATORIO LUDOWICI MPE 8 X20 MEDIANTE EL METODO DE LOS ELEMENTOS FINITOS MINERA EL TESORO DEPARTAMENTO DE INGENIERIA MEMORIA DE CALCULO ESTRUCTURA DE SOPORTACION DE HARNERO VIBRATORIO LUDOWICI MPE 8 X20 MEDIANTE EL METODO DE LOS ELEMENTOS FINITOS NOMBRE CARGO FIRMA FECHA PREPARO

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

RANGO DE TORQUE SEGURO Y COMPORTAMIENTO MECANICO DE EJES DE MASAS EMPLEADOS PARA EL AJUSTE DE RUEDAS DE BICICLETAS DE USO PÚBLICO

RANGO DE TORQUE SEGURO Y COMPORTAMIENTO MECANICO DE EJES DE MASAS EMPLEADOS PARA EL AJUSTE DE RUEDAS DE BICICLETAS DE USO PÚBLICO Congreso SAM/CONAMET 007 San Nicolás, 4 al 7 de Septiembre de 007 RANGO DE TORQUE SEGURO Y COMPORTAMIENTO MECANICO DE EJES DE MASAS EMPLEADOS PARA EL AJUSTE DE RUEDAS DE BICICLETAS DE USO PÚBLICO D. Martinez

Más detalles

PRUEBAS DE RESISTENCIA MÁXIMA AL APRIETE DE UNIONES ATORNILLADAS DE IMPLANTE Y PILAR DINÁMICO

PRUEBAS DE RESISTENCIA MÁXIMA AL APRIETE DE UNIONES ATORNILLADAS DE IMPLANTE Y PILAR DINÁMICO INFORME DE ENSAYO DEPARTAMENTO: Visión LABORATORIO: INFORME Nº: IV070016-03 ENSAYO PRUEBAS DE RESISTENCIA MÁXIMA AL APRIETE DE UNIONES ATORNILLADAS DE IMPLANTE Y PILAR DINÁMICO PETICIONARIO Empresa: Talladium

Más detalles

MATERIA FÍSICA ATÓMICA. Guía 5: Teoría de scattering por un potencial

MATERIA FÍSICA ATÓMICA. Guía 5: Teoría de scattering por un potencial MATERIA FÍSICA ATÓMICA Guía 5: Teoría de scattering por un potencial Problema 1 (Partícula libre): Utilizando una expansión en ondas esféricas, halle la expresión de la función radial para una partícula

Más detalles

CALIDAD SUPERFICIAL: RUGOSIDAD

CALIDAD SUPERFICIAL: RUGOSIDAD 1 CALIDAD SUPERFICIAL: RUGOSIDAD Introducción Dentro del mundo de la tecnología, se observan gran cantidad de piezas que han de ponerse en contacto con otras y rozarse a altas velocidades. El acabado final

Más detalles

Vectores y álgebra vectorial

Vectores y álgebra vectorial 1. Notas Preliminares Vectores y álgebra vectorial Desde siempre, desde los primeros cursos de Física en educación media, venimos hablando de vectores como cantidades que tienen que ser representadas con

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

CNEA, Unidad de Actividad Materiales, CAC, Av. Libertador 8250, Buenos Aires Argentina.

CNEA, Unidad de Actividad Materiales, CAC, Av. Libertador 8250, Buenos Aires Argentina. Jornadas SAM 2000 - IV Coloquio Latinoamericano de Fractura y Fatiga, Agosto de 2000, 543-549 ANALISIS DE LA VARIACION DE LAS PROPIEDADES MECANICAS DEL ACERO ASTM A 533 TIPO B CLASE 1 ( JRQ ) DE USO EN

Más detalles

ENTREGA 2 Fatiga de los metales: generalidades. Elaborado por Ing. Gustavo Jiménez. Seguridad

ENTREGA 2 Fatiga de los metales: generalidades. Elaborado por Ing. Gustavo Jiménez. Seguridad Seguridad ENTREGA 2 Fatiga de los metales: generalidades Elaborado por Ing. Gustavo Jiménez Formas en las que se produce la falla por fatiga en los componentes mecánicos Dependiendo de la forma como actúen

Más detalles

UNIDAD 2 Características mecánicas de los materiales

UNIDAD 2 Características mecánicas de los materiales UNIDAD Características mecánicas de los materiales.1 CUESTIONES DE AUTOEVALUACIÓN 1 - El alargamiento y la estricción son medidas directas de la: a) Resistencia. b) Ductilidad. c) Tenacidad. d) Dureza.

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores:

TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN. Curso 2010/11. Elaborados por los profesores: TEORIA DE ESTRUCTURAS Ingeniería Geológica PROBLEMAS DE EXAMEN Curso 2010/11 Elaborados por los profesores: Luis Bañón Blázquez (PCO) Fco. Borja Varona Moya (PCO) Salvador Esteve Verdú (ASO) PRÓLOGO La

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

9.1 DIELÉCTRICOS 9.1.1 QUÉ SON LOS DIELÉCTRICOS? 9.1.2 RIGIDEZ DIELÉCTRICA

9.1 DIELÉCTRICOS 9.1.1 QUÉ SON LOS DIELÉCTRICOS? 9.1.2 RIGIDEZ DIELÉCTRICA 9 DIELÉCTRICOS 9.1 DIELÉCTRICOS 9.1.1 QUÉ SON LOS DIELÉCTRICOS? Los dieléctricos son materiales, generalmente no metálicos, con una alta resistividad, por lo que la circulación de corriente a través de

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Probabilidad y Estadística Profesorados y Licenciatura en Computación Guía N 1: Estadística descriptiva

Probabilidad y Estadística Profesorados y Licenciatura en Computación Guía N 1: Estadística descriptiva Probabilidad y Estadística Profesorados y Licenciatura en Computación Guía N 1: Estadística descriptiva Ejercicio 1: El histograma que presentamos a continuación muestra la distribución de notas finales

Más detalles

Guía Docente: MATERIALES METÁLICOS: OBTENCIÓN Y COMPORTAMIENTO EN SERVICIO

Guía Docente: MATERIALES METÁLICOS: OBTENCIÓN Y COMPORTAMIENTO EN SERVICIO MATERIALES METÁLICOS: OBTENCIÓN Y COMPORTAMIENTO EN SERVICIO FACULTAD DE CIENCIAS QUÍMICAS UNIVERSIDAD COMPLUTENSE DE MADRID CURSO 2015-2016 I. IDENTIFICACIÓN NOMBRE DE LA ASIGNATURA: Materiales metálicos:

Más detalles

TEMA VI: Cálculo de recipientes de pared delgada

TEMA VI: Cálculo de recipientes de pared delgada TEMA VI: Cálculo de recipientes de pared delgada 1. Introducción. Envolventes de pequeño espesor Podemos definir una envolvente como aquel sólido elástico en el que una de sus dimensiones es mucha menor

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles
SitemapDefinition | 900 Premium Schlaggewichte Auswuchtgewichte 5-60g für Stahlfelgen 24,75kg NEU | 真・三國無双 斬 NEXON Co., Ltd. 即将上架